[00:00:00] Trigonometric Functions - Various Artists
[00:03:00]    
[00:03:00] 原唱:映射者/天儿
[00:05:00]    
[00:05:00] 后期:昔染
[00:06:00]    
[00:06:00] 视频:讲不清
[00:10:00]    
[00:10:00] When you first study math about 1234
[00:12:00] 你初次学习数学是从1 2 3 4开始的
[00:12:00] First study equation about xyzt
[00:14:00] 你初次学习方程是从包含x y z t的方程式开始的
[00:14:00] It will help you to think in a logical way
[00:17:00] 这有助你进行逻辑思考
[00:17:00] When you sing sine cosine tangent
[00:19:00] 当你唱着 正弦 余弦 余弦 正切
[00:19:00] Sine cosine tangent cotangent
[00:21:00] 正弦 余弦 正切 余切
[00:21:00] Sine cosine secant cosecant
[00:23:00] 正弦 余弦 正割 余割
[00:23:00] Let\'s sing a song about trig-functions
[00:25:00] 让我们唱起这首三角函数之歌
[00:25:00] sin(2π+α)=sinα
[00:27:00]    
[00:27:00] cos(2π+α)=cosα
[00:30:00]    
[00:30:00] tan(2π+α)=tanα
[00:31:00]    
[00:31:00] Which is induction formula1 and induction formula 2
[00:34:00] 这是第一类诱导公式 接下来是第二类诱导公式
[00:34:00] sin(π+α)=-sinα
[00:36:00]    
[00:36:00] cos(π+α)=-cosα
[00:38:00]    
[00:38:00] tan(π+α)=tanα
[00:40:00]    
[00:40:00] sin(π-α)=sinα
[00:42:00]    
[00:42:00] cos(π-α)=-cosα
[00:44:00]    
[00:44:00] tan(π-α)=-tanα
[00:47:00]    
[00:47:00] These are all those \"name do not change\"
[00:49:00] 这些都是函数名不变
[00:49:00] As pi goes to half pi the difference shall be huge
[00:51:00] 当π值缩小一半 结果会大不相同
[00:51:00] sin(π/2+α)=cosα
[00:53:00]    
[00:53:00] sin(π/2-α)=cosα
[00:55:00]    
[00:55:00] cos(π/2+α)=-sinα
[00:57:00]    
[00:57:00] cos(π/2-α)=sinα
[00:59:00]    
[00:59:00] tan(π/2+α)=-cotα
[01:02:00]    
[01:02:00] tan(π/2-α)=cotα
[01:08:00]    
[01:08:00] That is to say the odds will change evens are conserved
[01:12:00] 这就是说 奇变偶不变
[01:12:00] The notations that they get depend on where they are
[01:17:00] 符号看象限
[01:17:00] But no matter where you are
[01:19:00] 可是无论你在哪里
[01:19:00] I\'ve gotta say that
[01:21:00] 我都会说
[01:21:00] If you were my sine curve I\'d be your cosine curve
[01:25:00] 如果你是正弦函数 我愿做你的余弦函数
[01:25:00] I\'ll be your derivative you\'ll be my negative one
[01:30:00] 我会成为你的导数 而你是我的负导数
[01:30:00] As you change you amplitude I change my phase
[01:34:00] 当你改变振幅时 我会改变相位
[01:34:00] We can oscillate freely in the external space
[01:38:00] 我们可以在外空间自由地波动
[01:38:00] As we change our period and costant at hand
[01:42:00] 当我们改变周期和身旁的常数时
[01:42:00] We travel from the origin to infinity
[01:46:00] 我们可以从原点一直到无穷尽
[01:46:00] It\'s you sine and you cosine
[01:51:00] 正是你 正弦和余弦
[01:51:00] Who make charming music around the world
[01:55:00] 创造了这世上最动听的音乐
[01:55:00] It\'s you tangent cotangent
[01:59:00] 正是你 正切和余切
[01:59:00] Who proclaim the true meaning of centrosymmetry
[02:47:00] 揭示了中心对称的真正含义
[02:47:00] You wanna measure width of a river height of a tower
[02:49:00] 你想要测量河流的宽度以及塔的高度
[02:49:00] You scratch your head which cost you more than an hour
[02:51:00] 你抓耳挠腮 冥思苦想了一小时也无济于事
[02:51:00] You don\'t need to ask any \"gods\" or\" master\" for help
[02:53:00] 你无需向上帝或是伟人请求帮助
[02:53:00] This group of formulas are gonna help you solve
[02:55:00] 以下这组公式让你的难题迎刃而解
[02:55:00] sin(α+β)=sinα•cosβ+cosα•sinβ
[02:58:00]    
[02:58:00] cos(α+β)=cosα•cosβ-sinα•sinβ
[03:02:00]    
[03:02:00] tan(α+β)=(tanα+tanβ)/(1-tanα•tanβ)
[03:06:00]    
[03:06:00] sin(α-β)=sinα•cosβ-cosα•sinβ
[03:09:00]    
[03:09:00] cos(α-β)=cosα•cosβ+sinα•sinβ
[03:12:00]    
[03:12:00] tan(α-β)=(tanα-tanβ)/(1+tanα•tanβ)
[03:17:00]    
[03:17:00] As you come across a right triangle you feel easy to solve
[03:20:00] 当你遇到直角三角形时 你觉得很容易解决
[03:20:00] But an obtuse triange gonna make you feel confused
[03:22:00] 可是钝角三角形让你感到困惑
[03:22:00] Don\'t worry about what you do
[03:23:00] 不必担心 不必手足无措
[03:23:00] There are always means to solve
[03:24:00] 总会找到解决办法
[03:24:00] As long as you master the sine cosine law
[03:30:00] 只要你掌握了正余弦定理
[03:30:00] At this moment I\'ve got nothing to say
[03:34:00] 此刻我一言不发
[03:34:00] As trig-functions rain down upon me
[03:38:00] 当三角函数如雨点一般落在我身上
[03:38:00] At this moment I\'ve got nothing to say
[03:42:00] 此刻我一言不发
[03:42:00] Let\'s sing a song about trig-functions
[03:47:00] 让我们唱起这首三角函数之歌
[03:47:00] Long live the trigonometric functions
[03:52:00] 三角函数万岁
					

Trigonometric Functions - Various Artists

MP3下载

Various Artists-Trigonometric Functions的QQ空间背景音乐外链:

歌曲Various Artists-Trigonometric Functions的MP3下载地址来源于网络分享,复制链接或者右键链接另存为即可下载MP3音乐,同时网站提供Various Artists-Trigonometric Functions的QQ空间背景音乐歌曲链接,把这首歌曲的MP3链接地址推荐给你的朋友,可以让他们免费获得本歌曲音乐外链。

歌曲Trigonometric Functions的歌词下载

Trigonometric Functions - Various Artists

原唱:映射者/天儿

后期:昔染

视频:讲不清

When you first study math about 1234
你初次学习数学是从1 2 3 4开始的
First study equation about xyzt
你初次学习方程是从包含x y z t的方程式开始的
It will help you to think in a logical way
这有助你进行逻辑思考
When you sing sine cosine tangent
当你唱着 正弦 余弦 余弦 正切
Sine cosine tangent cotangent
正弦 余弦 正切 余切
Sine cosine secant cosecant
正弦 余弦 正割 余割
Let\'s sing a song about trig-functions
让我们唱起这首三角函数之歌
sin(2π+α)=sinα

cos(2π+α)=cosα

tan(2π+α)=tanα

Which is induction formula1 and induction formula 2
这是第一类诱导公式 接下来是第二类诱导公式
sin(π+α)=-sinα

cos(π+α)=-cosα

tan(π+α)=tanα

sin(π-α)=sinα

cos(π-α)=-cosα

tan(π-α)=-tanα

These are all those \"name do not change\"
这些都是函数名不变
As pi goes to half pi the difference shall be huge
当π值缩小一半 结果会大不相同
sin(π/2+α)=cosα

sin(π/2-α)=cosα

cos(π/2+α)=-sinα

cos(π/2-α)=sinα

tan(π/2+α)=-cotα

tan(π/2-α)=cotα

That is to say the odds will change evens are conserved
这就是说 奇变偶不变
The notations that they get depend on where they are
符号看象限
But no matter where you are
可是无论你在哪里
I\'ve gotta say that
我都会说
If you were my sine curve I\'d be your cosine curve
如果你是正弦函数 我愿做你的余弦函数
I\'ll be your derivative you\'ll be my negative one
我会成为你的导数 而你是我的负导数
As you change you amplitude I change my phase
当你改变振幅时 我会改变相位
We can oscillate freely in the external space
我们可以在外空间自由地波动
As we change our period and costant at hand
当我们改变周期和身旁的常数时
We travel from the origin to infinity
我们可以从原点一直到无穷尽
It\'s you sine and you cosine
正是你 正弦和余弦
Who make charming music around the world
创造了这世上最动听的音乐
It\'s you tangent cotangent
正是你 正切和余切
Who proclaim the true meaning of centrosymmetry
揭示了中心对称的真正含义
You wanna measure width of a river height of a tower
你想要测量河流的宽度以及塔的高度
You scratch your head which cost you more than an hour
你抓耳挠腮 冥思苦想了一小时也无济于事
You don\'t need to ask any \"gods\" or\" master\" for help
你无需向上帝或是伟人请求帮助
This group of formulas are gonna help you solve
以下这组公式让你的难题迎刃而解
sin(α+β)=sinα•cosβ+cosα•sinβ

cos(α+β)=cosα•cosβ-sinα•sinβ

tan(α+β)=(tanα+tanβ)/(1-tanα•tanβ)

sin(α-β)=sinα•cosβ-cosα•sinβ

cos(α-β)=cosα•cosβ+sinα•sinβ

tan(α-β)=(tanα-tanβ)/(1+tanα•tanβ)

As you come across a right triangle you feel easy to solve
当你遇到直角三角形时 你觉得很容易解决
But an obtuse triange gonna make you feel confused
可是钝角三角形让你感到困惑
Don\'t worry about what you do
不必担心 不必手足无措
There are always means to solve
总会找到解决办法
As long as you master the sine cosine law
只要你掌握了正余弦定理
At this moment I\'ve got nothing to say
此刻我一言不发
As trig-functions rain down upon me
当三角函数如雨点一般落在我身上
At this moment I\'ve got nothing to say
此刻我一言不发
Let\'s sing a song about trig-functions
让我们唱起这首三角函数之歌
Long live the trigonometric functions
三角函数万岁

拾音人音乐网提供Various Artists-Trigonometric Functions的MP3音乐在线试听下载,Trigonometric Functions的QQ空间背景音乐外链。
更多最新音乐推荐:https://www.shiyinren.com/song
酷我MP3音乐外链工具:https://www.shiyinren.com/tool/song/